< > Unit3ReadOnly - page 24 of 47
Navigation bar
  Six Sigma Home Print document Start Previous page
 24 of 47 
Next page End Contents 19 20 21 22 23 24 25 26 27 28 29  

Statistical Design of Experiments
Statistical Design of Experiments
Statistical Design of Experiments
Statistical Design of Experiments
The Formulas:
Two -Way ANOVA
Two -Way ANOVA
Total SS =
Total SS =
Observations
Total
ObservationTotal of all Observations)SS(E)
each
rab
2
2
2
2
Source
d.f.
SS
MS ~ Variance
Error
TOTAL
Factor B
Factor A
Interaction (AB)
(a -
1)
(b -
1)
(a -1) (b -1)
(n -
ab)
(n -
1)
SS(A)
SS(B)
SS(AB)
SSE
Total SS
SS(A) / (a -
1)
SS(B) / (b -
1)
SS(AB) / (a -
1)(b -
1)
SSE / (n -
ab)
Total SS
n = rabSS(A)
= total number of observations
r = number of times each factorial treatment
combination appears in the experiment
(replication)
SS(A) = 
SS(A) = 
(Each level total of A)²
(Each level total of A)&sup2;
2
rb
rb
-
-
(Total of all Observations)²
(Total of all Observations)&sup2;
2
rab
rab
SS(A)
SS(B)
SS(B) = 
SS(B) = 
(Each level total of B)²
(Each level total of B)&sup2;
2
ra
ra
-
-
(Total of all Observations)²
(Total of all Observations)&sup2;
2
rab
rab
SS(AB)
SS(AB) = 
SS(AB) = 
(Each Treat. Comb. Total)
(Each Treat. Comb. Total)
2
2
r
r
-
-
(Total of all Observations)
(Total of all Observations)SS(E)
2
2
rab
rab
-
-
SSA-
SSA&#45;
-
SSB
SSB
SS
SS
Error
Error
= Total SS -
= Total SS -
SSA -
SSA -
SSB -
SSB -
SS(AB)
SS(AB)
SSE
SS(A) / (a -
1)
MS(B) = 
MS(B) = 
SS(B)
SS(B)
d.f.(B)
d.f.(B)
SS(B) / (b -
1)
MS(AB) = 
MS(AB) = 
SS(AB)
SS(AB)
d.f.(AB)
d.f.(AB)
SS(AB) / (a -
1)(b -
1)
MSE = 
MSE = 
SS(E)
d.f.(E)
d.f.(E)
SSE / (n -
ab)
MS(A) = 
MS(A) = 
SS(A)
d.f.(A)
d.f.(A)
To test EACH null hypothesis: Calculate the F
statistic for each factor or interaction and compare
against the Critical value of F to determine if it
significantly affects the response variable
F =
F =
MS(A)
MS(A)
MSE
MSE
F =
F =
MS(B)
MS(B)
MSE
MSE
F =
F =
MS(AB)
MS(AB)
MSE
MSE
Previous page Top Next page